If meetings really lower IQ…

… then there’s little hope for the world, says Alison Campbell, who attends far too many meetings. Fortunately however, that may not be the case.

I attend a lot of meetings; that’s the nature of my job. Recently the Dean came in and waved the front section of the NZ Herald under my nose. “Look,” he said, “all those meetings are really bad for you.” Scenting a way of getting out of them, I grabbed the paper and found the article in question (syndicated from the UK paper, The Telegraph).

“Attending meetings lowers your IQ,” cried the headline, and the article goes on to say that:

“[the] performance of people in IQ tests after meetings is significantly lower than if they are left on their own, with women more likely to perform worse than men.”

The story is based on a press release about research carried out at Virginia Tech’s Carilion Institute. And this showed that the research outcomes were more nuanced and more complex than the newspaper story would have it. The research found that small-group dynamics – such as jury deliberations, collective bargaining sessions, and cocktail parties – can alter the expression of IQ in some susceptible people (Kishida et al. 2012).

In other words, meetings don’t necessarily lower your baseline IQ. What they may do is change how you express that IQ, particularly if you’re susceptible to peer pressure. The internal urge to conform can result in people making decisions as part of a group that they might not have made on their own, especially if they have concerns about their status in that group. (As the Virginia Tech release notes, this was shown to good effect in the superb film 12 Angry Men, with Henry Fonda leading a stellar cast.)

The researchers placed study participants in groups of five and studied their brain activity (using MRI scans) while the groups were engaged in various tasks. While the groups were working they were also given information about the intellectual status of group members, based on their relative performance on those cognitive tasks. (There’s a tendency for people to place great store on relative measures of IQ, and where they personally sit on the scale.) And afterwards, when participants were divided on the basis of their performance into high- and low-performing groups before their IQs were measured again, they were found to differ quite signficantly despite the fact that all participants had statistically similar baseline IQs when tested at the beginning of the study.

“Our results suggest that individuals express diminished cognitive capacity in small groups, an effect that is exacerbated by perceived lower status within the group and correlated with specific neurobehavioural responses. The impact these reactions have on intergroup divisions and conflict resolution requires further investigation, but suggests that low-status groups may develop diminished capacity to mitigate conflict using non-violent means.”

As I said, this is altogether more nuanced, more complex, and much more interesting than the news story that caught the boss’s eye. I suspect I’ll be attending meetings for a while yet.

K.T.Kishida, D.Yang, K.Hunter Quartz, S.R.Quartz and R.Montague (2012) Phil.Trans.R.Soc.B 367(1589): 704-716.

Using pseudoscience to teach science

There may indeed be a place for creationism in the science classroom, but not the way the creationists want. This article is based on a presentation to the 2011 NZ Skeptics Conference.

We live in a time when science features large in our lives, probably more so than ever before. It’s important that people have at least some understanding of how science works, not least so that they can make informed decisions when aspects of science impinge on them. Yet this is also a time when pseudoscience seem to be on the increase. Some would argue that we simply ignore it. I suggest that we put it to good use and use pseudoscience to help teach about the nature of science – something that Jane Young has done in her excellent book The Uncertainty of it All: Understanding the Nature of Science.

The New Zealand Curriculum (MoE, 2007) makes it clear that there’s more to studying science than simply accumulating facts:

Science is a way of investigating, understanding, and explaining our natural, physical world and the wider universe. It involves generating and testing ideas, gathering evidence – including by making observations, carrying out investigations and modeling, and communicating and debating with others – in order to develop scientific knowledge, understanding and explanations (ibid., p28).

In other words, studying science also involves learning about the nature of science: that it’s a process as much as, or more than, a set of facts. Pseudoscience offers a lens through which to approach this.

Thus, students should be being encouraged to think about how valid, and how reliable, particular statements may be. They should learn about the process of peer review: whether a particular claim has been presented for peer review; who reviewed it; where it was published. There’s a big difference between information that’s been tested and reviewed, and information (or misinformation) that simply represents a particular point of view and is promoted via the popular press. Think ‘cold fusion’, the claim that nuclear fusion could be achieved in the lab at room temperatures. It was trumpeted to the world by press release, but subsequently debunked as other researchers tried, and failed, to duplicate its findings.

A related concept here is that there’s a hierarchy of journals, with publications like Science at the top and Medical Hypotheses at the other end of the spectrum. Papers submitted to Science are subject to stringent peer review processes – and many don’t make the grade – while Medical Hypotheses seems to accept submissions uncritically, with minimal review, for example a paper suggesting that drinking cows’ milk would raise odds of breast cancer due to hormone levels in milk – despite the fact that the actual data on hormone titres didn’t support this.

This should help our students develop the sort of critical thinking skills that they need to make sense of the cornucopia of information that is the internet. Viewing a particular site, they should be able to ask – and answer! – questions about the source of the information they’re finding, whether or not it’s been subject to peer review (you could argue that the internet is an excellent ‘venue’ for peer review but all too often it’s simply self-referential), how it fits into our existing scientific knowledge, and whether we need to know anything else about the data or its source.

An excellent example that could lead to discussion around both evolution and experimental design, in addition to the nature of science, is the on-line article Darwin at the drugstore: testing the biological fitness of antibiotic-resistant bacteria (Gillen & Anderson, 2008). The researchers wished to test the concept that a mutation conferring antibiotic resistance rendered the bacteria possessing it less ‘fit’ than those lacking it. (There is an energy cost to bacteria in producing any protein, but whether this renders them less fit – in the Darwinian sense – is entirely dependent on context.)

The researchers used two populations of the bacterium Serratia marcescens: an ampicillin-resistant lab-grown strain, which produces white colonies, and a pink, non-resistant (‘wild-type’) population obtained from pond water. ‘Fitness’ was defined as “growth rate and colony ‘robustness’ in minimal media”. After 12 hours’ incubation the two populations showed no difference in growth on normal lab media (though there were differences between four and six hours), but the wild-type strain did better on minimal media. It is hard to judge whether the difference was of any statistical significance as the paper’s graphs lack error bars and there are no tables showing the results of statistical comparisons – nonetheless, the authors describe the differences in growth as ‘significant’.

Their conclusion? Antibiotic resistance did not enhance the fitness of Serratia marcescens:

… wild-type [S.marcescens] has a significant fitness advantage over the mutant strains due to its growth rate and colony size. Therefore, it can be argued that ampicillin resistance mutations reduce the growth rate and therefore the general biological fitness of S.marcescens. This study concurs with Anderson (2005) that while mutations providing antibiotic resistance may be beneficial in certain, specific, environments, they often come at the expense of pre-existing function, and thus do not provide a mechanism for macroevolution (Gillen & Anderson, 2008).

Let’s take the opportunity to apply some critical thinking to this paper. Students will all be familiar with the concept of a fair test, so they’ll probably recognise fairly quickly that such a test was not performed in this case: the researchers were not comparing apples with apples. When one strain of the test organism is lab-bred and not only antibiotic-resistant but forms different-coloured colonies from the pond-dwelling wild-type, there are a lot of different variables in play, not just the one whose effects are supposedly being examined.

In addition, and more tellingly, the experiment did not test the fitness of the antibiotic-resistance gene in the environment where it might convey an advantage. The two Serratia marcescens strains were not grown in media containing ampicillin! Evolutionary biology actually predicts that the resistant strain would be at a disadvantage in minimal media, because it’s using energy to express a gene that provides no benefit in that environment, so will likely be short of energy for other cellular processes. (And, as I commented earlier, the data do not show any significant differences between the two bacterial strains.)

What about the authors’ affiliations, and where was the paper published? Both authors work at Liberty University, a private faith-based institution with strong creationist leanings. And the article is an on-line publication in the ‘Answers in Depth’ section of the website of Answers in Genesis (a young-earth creationist organisation) – not in a mainstream peer-reviewed science journal. This does suggest that a priori assumptions may have coloured the experimental design.

Other clues

It may also help for students to learn about other ways to recognise ‘bogus’ science, something I’ve blogged about previously (see Bioblog – seven signs of bogus science). One clue is where information is presented via the popular media (where ‘popular media’ includes websites), rather than offered up for peer review, and students should be asking, why is this happening?

The presence of conspiracy theories is another warning sign. Were the twin towers brought down by terrorists, or by the US government itself? Is the US government deliberately suppressing knowledge of a cure for cancer? Is vaccination really for the good of our health or the result of a conspiracy between government and ‘big pharma’ to make us all sick so that pharmaceutical companies can make more money selling products to help us get better?

“My final conclusion after 40 years or more in this business is that the unofficial policy of the World Health Organisation and the unofficial policy of Save the Children’s Fund and almost all those organisations is one of murder and genocide. They want to make it appear as if they are saving these kids, but in actual fact they don’t.” (Dr A. Kalokerinos, quoted on a range of anti-vaccination websites.)

Conspiracy theorists will often use the argument from authority, almost in the same breath. It’s easy to pull together a list of names, with PhD or MD after them, to support an argument (eg palaeontologist Vera Scheiber on vaccines). Students could be given such a list and encouraged to ask, what is the field of expertise of these ‘experts’? For example, a mailing to New Zealand schools by a group called “Scientists Anonymous” offered an article purporting to support ‘intelligent design’ rather than an evolutionary explanation for a feature of neuroanatomy, authored by a Dr Jerry Bergman. However, a quick search indicates that Dr Bergman has made no recent contributions to the scientific literature in this field, but has published a number of articles with a creationist slant, so he cannot really be regarded as an expert authority in this particular area. Similarly, it is well worth reviewing the credentials of many anti-vaccination ‘experts’ – the fact that someone has a PhD by itself is irrelevant; the discipline in which that degree was gained, is important. (Observant students may also wonder why the originators of the mailout feel it necessary to remain anonymous…)

Students also need to know the difference between anecdote and data. Humans are pattern-seeking animals and we do have a tendency to see non-existent correlations where in fact we are looking at coincidences. For example, a child may develop a fever a day after receiving a vaccination. But without knowing how many non-vaccinated children also developed a fever on that particular day, it’s not actually possible to say that there’s a causal link between the two.

A question of balance

Another important message for students is that there are not always two equal sides to every argument, notwithstanding the catch cry of “teach the controversy!” This is an area where the media, with their tendency to allot equal time to each side for the sake of ‘fairness’, are not helping. Balance is all very well, but not without due cause. So, apply scientific thinking – say, to claims for the health benefits of sodium bicarbonate as a cure for that fungal-based cancer (A HREF=”http://www.curenaturalicancro.com”>www.curenaturalicancro.com). Its purveyors make quite specific claims concerning health and well-being – drinking sodium bicarbonate will cure cancer and other ailments by “alkalizing” your tissues, thus countering the effects of excess acidity! How would you test those claims of efficacy? What are the mechanisms by which drinking sodium bicarbonate (or for some reason lemon juice!) – or indeed any other alternative health product – is supposed to have its effects? (Claims that a ‘remedy’ works through mechanisms as yet unknown to science don’t address this question, but in addition, they presuppose that it does actually work.) In the new Academic Standards there’s a standard on homeostasis, so students could look at the mechanisms by which the body maintains a steady state in regard to pH.

If students can learn to apply these tools to questions of science and pseudoscience, they’ll be well equipped to find their way through the maze of conflicting information that the modern world presents, regardless of whether they go on to further study in the sciences.


Have universities degraded to teaching ‘only’ scientific knowledge?

Alison Campbell considers the current state of tertiary education.

The title for this article is taken from one of the search terms used by people visiting my ‘other’ blog, Talking Teaching, which I share with Marcus Wilson and Fabiana Kubke. It caught my eye and I thought I’d use it as the basis of some musings.

We’ll assume that this question is directed at science faculties. Using the word ‘degraded’ suggests that a university education used to provide more than simply a knowledge base in science.

(If I wanted to stir up a bit of controversy I could say that it’s just as well that they ‘only’ teach scientific knowledge, however that’s defined. My personal opinion is that the teaching of pseudoscience, eg homeopathy, ‘therapeutic touch’ etc, has no place in a university, and it’s a matter of some concern that such material has appeared in various curricula in the US, UK and Australia, among other countries. Why? Because it’s not evidence-based, and close investigation – in one case, by a nine-year-old schoolgirl – shows that it fails to meet the claims made for it. You could teach about it, in teaching critical thinking, but as a formal curriculum subject? No way.)

Anyway, back to the chase. Did universities teach more than just ‘the facts’, in the past? And is it a Bad Thing if we don’t do that now?

I’ll answer the second question first, by saying that yes, I believe it is a Bad Thing if all universities teach is scientific knowledge – if by ‘knowledge’ we mean ‘facts’ and not also a way of thinking. For a number of reasons. Students aren’t just little sponges that we can fill up with facts and expect to recall such facts in a useful way. They come into our classes with a whole heap of prior learning experiences and a schema, or mental construct of the world, into which they slot the knowlege they’ve gained. Educators need to help students fit their new learning into that schema, something that may well involve challenging the students’ worldviews from time to time. This means that we have to have some idea of what form those schemas take, before trying to add to them.

What’s more, there’s more to science than simply ‘facts’. There’s the whole area of what science actually is, how it works, what sets it apart from other ways of viewing the world. You can’t teach that by simply presenting facts (no matter how appealingly you do this). Students need practice in thinking like a scientist, ‘doing’ science, asking and answering questions in a scientific way. And in that sense, I would have to say that I think universities may have ‘degraded’.

Until very recently, it would probably be fair to say that the traditional way of presenting science to undergraduates, using lectures as a means of transmitting facts and cook-book labs as a means of reinforcing some of those facts (and teaching practical skills), conveyed very little of what science is actually all about. And it’s really encouraging to see papers in mainstream science journals that actively promote changing how university science teaching is done (eg Deslauriers et al, 2011, Haak et al, 2011, and Musante, 2012).

Of course, saying we’ve ‘degraded’ what we do does make the assumption that things were different in the ‘old days’. Maybe they were. After all, back in Darwin’s day (and much more recently, in the Oxbridge style of university, anyway) teaching was done via small, intimate tutorials that built on individual reading assignments and must surely have talked about the hows and the whys, as well as the whats, of the topic du jour.

However, when I was at university (last century – gosh, it makes me feel old to say that!) things had changed, and they’d been different for quite a while. Universities had lost that intimacy and the traditional lecture (lecturer ‘transmitting’ knowledge from up the front, and students scrabbling to write it all down) was seen as a cost-effective method of teaching the much larger classes that lecturers faced, particularly in first-year.

In addition, the sheer volume of knowledge available to them had increased enormously, and with it, the pressure to get it all across. And when you’re under that pressure to teach everything that lecturers in subsequent courses require students to know before entering ‘their’ paper, transmission teaching must have looked like the way to go. Unfortunately, by going that route, we’ve generally lost track of the need to help students learn what it actually means to ‘do’ science.

Now, those big classes aren’t going to go away any time soon. The funding model for universities ensures that. (Although, there’s surely room to move towards more intimate teaching methods in, say, our smaller third-year classes? And in fact I know lecturers who do just that.) But there are good arguments for encouraging the spread of new teaching methods that encourage thinking, interaction, and practising a scientific mindset, even in large classes. Those papers I referred to show that it can be done, and done very successfully.

First up: there’s more to producing a scientifically literate population than attempting to fill students full of facts (which they may well retain long enough to pass the end-of-term exam, and then forget). We need people with a scientific way of thinking about the many issues confronting them in today’s world. Of course, we also need a serious discussion at the curriculum level, about what constitutes ‘must-have’ knowledge and what can safely be omitted in favour of helping students gain those other skills. (This is something that’s just as important at the level of the senior secondary school curriculum.)

And secondly: giving students early practice at doing and thinking about science may encourage more of them to consider the option of graduate study, maybe going on to become scientists themselves. In NZ graduate students are funded at a higher rate than undergraduates, and the PBRF system rewards us for graduate completions, so there’s a good incentive for considering change right there!

Deslauriers, L.; Schelew, E.; Wieman, C. (2011): Improved learning in a large-enrollment physics class. Science, 332 (6031), 862-4.
Haak, D. C.; HilleRisLambers, J.; Pitre, E.; Freeman, S. (2011): Increased structure and active learning reduce the achievement gap in introductory biology. Science, 332 (6034),1213-6.
Musante, S. (2012): Motivating tomorrow’s biologists. Bioscience 62(1): 16.

New woo for you

Alison Campbell learns how to fine-tune the universe with a didgeridoo.

Recently a commenter on Orac’s Respectful Insolence blog ( scienceblogs.com/insolence) mentioned the therapeutic use of didgeridoos for various health issues. Surely this is a joke, I thought. But no: it seems that didgeridoo sound therapy (Http://www.didgetherapy.com) is indeed alive and well.

Apparently it works by:

(a) producing ultrasound frequencies that have a massaging effect (no, really!);

(b) clearing “emotional and energetic stagnation”; and

(c) allowing” meditation and mind-body healing”. And of course “[m]editation can also be used to quantum manifest healing and the co-creation of our universe.”

Wow! Who’d have thunk it? Every time someone meditates, they’re fine-tuning the universe (if not actually remaking it anew).

So, we have all the signs of classic ‘woo’ here. Quite apart from the (mis) use of words like ‘quantum’ (in the words of Inigo Montoya, “you keep using that word. I do not think it means what you think it means”), we have information-poor statements like this (original grammar but I’ve emphasised a phrase):

“This low frequency producing characteristic of the didgeridoo creates a no touch “sound massage” and has been reported to provide similar results as conventional ultra sound treatments and relieve a wide range of joint, muscular and skeletal related pain.”

“reported”… By whom, to whom, and where? In other words, show us the data. Without that, we are simply dealing with anecdote and testimonial.

And there’s the energy cleansing: here the website blurb refers to both TCM and Ayurvedic ‘medicine’, and gushes that the effects of playing a didgeridoo are as follows;

“The most basic description one could give for the energetic clearing power of the didgeridoo is “it is like a reiki or qi gong power washer.” It has been reported that the energetic clearing effects are similar to traditional five-element acupuncture.”

This might be fine if reiki actually did anything… And there’s that “reported” again. Plus, how was the similarity to the results of acupuncture measured, and for which ailments? (There’s quite a list of health issues for which didgeridoo therapy is supposedly useful, on that website. At least they don’t claim that it actually cures cancer.(

One testimonial, featured on the website, describes didgeridoo music as an “Ancient Vibrational medicine” (it would be interesting to know how Australian aborigines view this), which fits with the statement that:

“Sound Therapy is based on the theory* that all life vibrates at various frequencies and specifically the human body has multiple vibrational frequencies that can slip ‘out of tune’ due to emotional or energetic stagnation. When these frequencies are ‘out of tune’ they can lead to physical and emotional health issues.”

This vibration thing has been around for a while – Orac has taken several looks at the various claims made about it (including the truly bizarre claim that DNA produces sound waves, that these can be recorded, and that those recordings can be transmitted to someone else and change their DNA in turn!( However, the idea’s longevity doesn’t actually mean that it’s in any way an accurate reflection of biological reality.

And finally, we have this:

“Didgeridoo Sound Therapy & Sound Healing is not an Aboriginal Australian tradition or practice, though love and respect is given to them for sharing this amazing instrument with the world.”

So – not an “Ancient Vibrational medicine” at all, then …

  • Not ‘theory’ in the sense of ‘strong, scientific explanation for a large number of observations/measurements’, but rather, in the sense of ‘some idea I’ve** come up with.’

** Not me personally!

Dishwashers of doom

Alison Campbell investigates alarming reports on what is living in our dishwashers.

I don’t know what worried me more about an article I read in The Registrar recently (www.theregister.co.uk/2011/06/21/dishwasher_peril/) – the implication that my dishwasher and its fungal denizens might be out to get me (which I suppose could necessitate returning to Plan B: the Significant Other; after all, I do the cooking, so he can wash up!), or the rather piss-taking tone of the story. I mean, how else to take the headline: “The Killer Mutant Fungus in Your Dishwasher: don’t approach without a biohaz suit and a flame-thrower” ?

On the other hand, it did spur me into going to look for the original article (P Zalar, M Novak, GS de Hoog, N Gunde-Cimerman 2011: Journal of Fungal Biology: 10.1016/j.funbio.2011.04.007). And now I know that the ‘interesting’ black stuff that sometimes springs up around the seals is probably a living organism and not necessarily due to the family’s regrettable inability to rinse dishes before loading. (The authors of the article don’t actually say whether their investigation was initiated after observing similar black mouldy bits, but I can’t help wondering…)

Now, purveyors of various household cleaning agents would have us believe that the kitchen is home to a range of nasty microbes, which can be held at bay only by spraying or wiping with various anti-microbial or antiseptic products. (I wonder how my family remains so healthy, in the absence of many of these wondrous chemicals.) But you’d think something like a dishwasher would be hygienically clean – after all, anything that goes through the wash cycle has been exposed to high temperatures and a fairly alkaline (high pH) environment (although that may be changing, as we move to less harsh detergents and cooler temperatures in attempts to use less energy and release fewer wastes).

Not according to Zalar and colleagues. Noting that our knowledge of organisms that live in extreme environments (extremophiles) is expanding, they decided to look away from the hot pools and volcanic vents and into a more mundane environment – the domestic dishwasher. Anything that can colonise and survive in that machine’s hot, alkaline conditions could also rightly be described as an extremophile – one with a ready source of nutrients from all those messy food smears. So the team took samples from the inside surfaces of dishwashers: specifically, the rubber seals, as their surface would be easier to colonise than slick metal.

They ended up sampling 189 machines from private homes: 102 from Slovenia, 42 from elsewhere in Europe, and the rest from North and South America, Africa, Australia, Israel, and Far-East Asia. Because they were interested in the possibility of dishwashers harbouring human pathogens, they incubated their samples at 37°C, before going on to test the ability of some of them to grow at temperatures closer to what you might find in an operating dishwasher.

The results – a range of fungi, including Aspergillus (which can cause quite significant disease), Candida (aka ‘thrush’) and Penicillium, with the most commonly-found species – in around a third of dishwashers – being the ‘black yeasts’ (Exophalia spp.) They also found quite a bit of variation in terms of how ‘infected’ the machines were, with those from North America having the most fungal species while those from Spain were all devoid of fungal life. However, I think the numbers are a bit low to draw much from that, with only 13 from North America and five from Spain.

Exophalia is “known to cause systemic disease in humans” and is a common pathogen in the lungs of cystic fibrosis patients. Some of the Exophalia strains survived in temperatures up to 47°C, although I do wonder how they could hang on given that dishwasher temperatures can exceed 60° and get up to 80°C on occasion. The authors don’t propose any survival mechanisms, and I’d like to hear more about that.

However (before you rush out and get rid of the dishwasher) they found no evidence of fungal illnesses that could be attributed to the ‘dishwasher’ fungi in the homes where they obtained their samples. So while the possibility is there for the home dishwasher to be a hotbed of infection, in practice no link has yet been observed. And this rather gives the lie to the somewhat hysterical tone of the Register report. We’re not yet at the point of needing haz-mat suits to wear while doing the dishes. Still, I suppose that approach wouldn’t sell so many papers…

But it’s also rather cool to think that extremophile organisms may be living much closer to home – no need to head off to the slopes of Erebus or the edge of a boiling soda spring to spot them.

I must go and get the rubber gloves and baking soda…

‘’Darwin’’s Dilemma’’: ID in NZ

Alison Campbell looks at a new ‘resource’ for New Zealand schools, helpfully provided by the creationist movement.

A little while ago Ken Perrott, who writes the Open Parachute blog, alerted me to an Intelligent Design website that appeared to be set up to provide ID ‘resources’ to teachers and others who might be interested. Today I found time to wander over and have a look at what was on offer (not much, at the moment(. The site’s owner is [idfilms[, who tells us that:
idfilms was established with the express purpose of reinvigorating and expanding the ID discussion in New Zealand and Australia. The people behind idfilms are committed to the search for truth about the origin of life and the universe, just like you.

The only resource currently on offer on the Products Page is a DVD entitled Darwin’s Dilemma, for which the blurb reads:
Darwin’s Dilemma explores one of the great mysteries in the history of life: The geologically-sudden appearance of dozens of major complex animal types in the fossil record without any trace of the gradual transitional steps Charles Darwin had predicted. Frequently described as [the Cambrian Explosion,[ the development of these new animal types required a massive increase in genetic information. [The big question that the Cambrian Explosion poses is where does all that new information come from?[ says Dr. Stephen Meyer, a featured expert in the documentary.

Interesting, given the subject matter, that one of the DVD’s [featured experts[ is neither a geneticist nor an evolutionary biologist…

[Darwin’s Dilemma[ isn’t a particularly accurate characterisation, given that discovery of the extensive Cambrian biota happened well after Darwin’s death. Nor is the idea of an [explosion[ all that accurate, as the evidence from palaeontology and molecular biology points to a rather more ancient origin for the various phyla found in Cambrian rocks.

The statement that [the development of these new animal types required a massive increase in genetic information[ suggests a lack of understanding of a particular suite of genes, the Hox genes. Major changes in morphology can come about as a result of small changes in the Hox genes, because they influence the arrangement and timing of development of various body parts. No need for [massive increases in genetic information[ here. However, that phrase is simply setting the stage for the claim that this increase in [information[ can only have come about through the agency of a designer, again ignoring the observed ability of mutations – such as the duplication of genes due to transposon activity – to do this all by themselves.

However, if we must look at [complex specified information[ (the catchphrase of Meyer’s colleague William Dembski for the way to recognise the work of the designer(, let’s ask a few questions about it. What exactly is complex specified information? How is it produced? How do we tell it apart from the bits of the genome that aren’t due to an external agency?

Well, the short answer would appear to be that even the ‘experts’ don’t know. How else are we to interpret the discussion associated with On the calculation of CSI, a post at Uncommon Descent? A concept that cannot be adequately explained can hardly form the basis of a sound teaching resource, let alone provide the impetus to change our view of how evolution works.

Resistance to science

Alison Campbell reviews a study of why so many struggle with scientific concepts.

One of the topics that comes up for discussion with my Sciblogs colleagues is the issue of ‘resistance to science’ – the tendency to prefer alternative explanations for various phenomena over science-based explanations for the same observations. It’s a topic that has interested me for ages, as teaching any subject requires you to be aware of students’ existing concepts about it, and coming up with ways to work with their misconceptions. So I was interested to read a review paper by Paul Bloom and Deena Weisberg, looking at just this question.

Bloom and Weisberg conclude there are two key reasons why people can be resistant to particular ideas in science. One is that we all have “common-sense intuitions” about how the world works, and when scientific explanations conflict with these, often it’s the science that loses out. The other lies with the source(s) of the information you receive. They suggest that “some resistance to scientific ideas is a human universal” – one that begins in childhood and which relates to both what students know and how they learn.

Before they ever encounter science as a subject, children have developed their own understandings about how the world works. This means they may be more resistant to an idea if it’s an abstract concept and not one that they have experienced – or can experience – on the personal level. Bloom and Weisberg cite research showing that the knowledge that objects are solid, don’t vanish just because they’re out of sight, fall if you drop them, and don’t move unless you push them, is developed when we are very young children. And we develop similar understandings about how people operate (eg, that we’re autonomous beings whose actions are influenced by our goals) equally early.

Unfortunately for science educators, these understandings can become so ingrained that if they clash with scientific understandings, those particular science facts can be very hard to learn. It’s not a lack of knowledge, but the fact that students have “alternative conceptual frameworks for understanding [these] phenomena” that can make it difficult to move them to a more scientific viewpoint. The authors give an example based on the common-sense understanding that an unsupported object will fall down – for many young children, this can result in difficulty seeing the world as a sphere, because people on the ‘downwards’ side should just fall right off. This idea can persist until the age of eight or nine.

And it seems that psychology also affects how receptive people are to scientific explanations. When you’re four, you tend to view things “in terms of design and purpose”, which means (among other things) that young children will provide and accept creationist explanations about life’s origins and diversity. Plus there’s dualism: “the belief that the mind is fundamentally different from the brain”, which leads to claims that the brain is responsible for “deliberative mental work” but not for emotional, imaginative, or basic everyday actions. This in turn can mean that adults can be very resistant to the idea that the things that make us who and what we are can emerge from basic physical processes. And that shapes how we react to topics such as abortion and stem cell research.

In other words, those who resist the scientific view on given phenomena do so because the latter is counterintuitive, although this doesn’t really explain the fact that there are cultural differences in willingness to accept scientific explanations. For example, about 40 percent of US citizens accept the theory of evolution – below every country surveyed with the exception of Turkey (Miller et al. 2006). Part of the problem seems to lie with the nature of ‘common knowlege’: if everyone regularly and consistently uses such concepts, children will pick them up and internalise them (believing in the existence of electricity, for example, even though it’s something they’ve never seen). For other concepts, the source of information is important. Take evolution again: parents may say one thing about evolution, and teachers, another. Who do you believe? It seems, according to Bloom and Weisberg, that it all depends on how much you trust the source.

The authors conclude:

“These developmental data suggest that resistance to science will arise in children when scientific claims clash with early emerging, intuitive expectations. This resistance will persist through adulthood if the scientific claims are contested within a society, and it will be especially strong if there is a nonscientific alternative that is rooted in common sense and championed by people who are thought of as reliable and trustworthy.”

Yet we live in a society where ‘ alternative’ explanations are routinely presented by media in a desire to present ‘ balance’ where there isn’ t any, or indeed, without any attempt at balance at all. And the internet makes it even easier to present non-scientific views of the world in an accessible, authoritative and reasonable way. As science communicators and educators, my colleagues and I really are up against it, and I would say there’s a need for Bloom and Weisberg’s findings to be much more widely read.

Bloom, P; Weisberg, DS (2007): Childhood origins of adult resistance to science. Science 316 (5827), 996-7.
Miller, JD; Scott, EC; Okamoto, S 2006: Public acceptance of evolution. Science 313: 765 – 766.

So who are these ‘‘scientists anonymous’’?

Alison Campbell finds the creationists are still trying to get into our schools.

A friend of mine, who happens to be a biology teacher, recently forwarded me an email. Quite apart from the fact that the sender had sent it to what looks like every secondary school in the country and didn’t have the courtesy to bcc the mailing list, there are a number of issues around it that give me some concern.

But first, the email:

TO: Faculty Head of Science / Head of Biology Department

Please find attached a new resource (pp. 12-14) by Dr Jerry Bergman on the left recurrent laryngeal nerve (RLN) for the teaching and learning of Senior Science/Biology (human evolution). [Edit: The original email had a link to the article on RLN, which was on the Institute for Creation Research website.]

• Much evidence exists that the present design results from developmental constraints.

• There are indications that this design serves to fine-tune laryngeal functions.

• The nerve serves to innervate other organs after it branches from the vagus on its way to the larynx.

• The design provides backup innervation to the larynx in case another nerve is damaged.

• No evidence exists that the design causes any disadvantage.

Freely share this resource with the teaching staff in your faculty/department.

Yours sincerely,

Scientists Anonymous (NZ)

PRIVACY ACT/DISCLAIMER Dissemination of extraordinary science resources will be made once or twice a year at the most (opt out).

All replies will be read but not necessarily acknowledged (no-reply policy applies).

The distribution of resources through this mailing system is not by the Publishers.

It’s immediately obvious that this is a thinly disguised attempt by cdesign proponentsists to get ‘intelligent design’ materials into the classroom [Those unfamiliar with the term ‘cdesign proponentsists’ please use Google – ed.]. The use of the word ‘design’ is a dead giveaway there. The arrangement of the laryngeal nerves has been noted by biologists as an example of poor ‘design’ as it doesn’t follow a straightforward path to the organs it innervates (and in fact follows an extremely lengthy detour in giraffes!), leading to the question, why would a ‘designer’ use such poor planning? (There’s a good YouTube clip on the subject.) That the ID proponents now seem to be arguing that poor design is actually purposeful and thus still evidence of a designer smacks of grasping at straws. Furthermore, the article that the email originally linked to is mounted on the Institute for Creation Research website – it’s not published in a peer-reviewed journal. So there’s nothing “extraordinary” about this particular “resource”.

Of more significance, I think, is the identity of the originators of this message (and I note they promise others in future; at least one can opt out!). “Scientists Anonymous”. This is an attempt at an appeal to authority – a bunch of scientists say so, so we should give it some weight.

But we shouldn’t – because we don’t know who they are. No-one’s publicly signed their name to this stuff, so why should we accept their authority in this matter? Are there really any practising scientists there? Are any of them biologists? Who knows… but it adds no weight to their proclaimed position on this issue. The only person mentioned by name, Jerry Bergman, is indeed a biologist by training, for whom the first Google entries are citations by Answer in Genesis and CreationWiki. Google Scholar indicates that his recent publications are not in the area of biological sciences but promote anti-evolution ideas including the one that Darwin’s writings influenced Hitler’s attitudes to various racial groups (an idea that’s been throroughly debunked elsewhere).

A search for ‘scientists anonymous’ brings up a students’ Facebook site and a book of the same name about women scientists. So who, exactly, are these ‘Scientists Anonymous’ who are behind the email to schools, and why aren’t they prepared to put their names to the document?

Oxygenated food for the brain?

Alison Campbell finds some claims about raw foods hard to swallow.

I was reading a couple of articles about ‘raw foods’ today. This is ‘raw foods’ as in ‘foods that you don’t heat above 40°C in processing them.’ It’s also as in, a vegetarian diet. (I do rather enjoy vegetarian food, but I don’t think I could eat nothing but, all the time; I like meat too much.) Anyway, what caught my eye wasn’t so much the diet programme itself but the mis-use of science to promote it. That did rather get my goat broccoli.

Apparently you should get your kids to eat their greens (along with the rest of the diet) by telling them that plants do this wonderful thing: they turn sunlight into chlorophyll and – when you eat it – it will give you extra oxygen. Sigh&#8230 This concept was repeated in the second article, which told me that raw (but not cooked) foods are ‘oxygenated’ and thus better for your brain, which needs to be fully oxygenated to work properly.

Well, yes, and so do all your other bits and pieces, and they don’t get the oxygen from food. As Ben Goldacre once said, even if chlorophyll were to survive the digestive process and make it through to the intestine, it needs light in order to photosynthesise, quite apart from the fact that you don’t normally absorb oxygen across the gut wall. And it’s kind of dark inside you.

The second shaky claim related to digestive enzymes. Because raw foods are ‘alive’ then they are full of enzymes. And so we’re told that eating them will help you to digest your meals better.

Er, no. First, because when said enzymes – being proteins – hit the low pH environment of your stomach they are highly likely to be denatured. This change in shape means that they lose the ability to function as they should, and in fact they’ll be chopped up into amino acids like any other protein in your food, before being absorbed and then used by your cells to make their own enzymes.

And second – the raw foods diet is plant-based. Yes, plants and animals are going to have some enzymes in common. I’d expect that those involved in cellular respiration and DNA replication/protein synthesis would be very similar, for example, because these are crucial processes in any cell’s life and any deviations in form and function are likely to be severely punished by natural selection. But we already have those enzymes; they’re manufactured in situ as required. In other words, even if the plant enzymes somehow made it into cells intact and capable of functioning, they’d be redundant.

However, with a very few exceptions, plants aren’t in the habit of consuming other organisms so, in regard to plant cells being a good source of the digestive enzymes required for the proper functioning of an omnivore’s gut – no, I don’t think so. No.

Some might ask, why on earth do I bother about this stuff? After all, it’s not doing any harm. But the thing is – science is so cool, so exciting; it tells us so much about the world – why do people have to prostitute it in this way? Kids (and others) are fascinated by the way their bodies’ organ systems work, and I can’t see why there seems to be a need to provide ‘simple’ – and wrong! – alternative ‘explanations’ when the real thing is so wonderful.

Belief and knowledge: a plea about language

Alison Campbell looks at some words that cause scientific misunderstandings.

I suspect that for many of my first-year Biology students, the sheer weight of new terms they come across is perhaps the most daunting thing about the course. In some ways learning biology is rather like learning a new language, with several thousand new words swamping the page (and the brain).

But there’s more than just the new words – there’s the meaning of the words to come to terms with. This is the focus of Helen Quinn’s paper in Physics Today (2007): Belief and knowledge – a plea about language. There are many words whose meaning to a scientist may be quite different from what they mean to a layperson. Quinn feels, and I agree, that some words “are the root of considerable public misunderstanding about science: belief, hypothesis, theory and knowledge.”

‘Belief’ isn’t really a word that sits well with science. As Quinn says, it can be “an article of faith” ie religious belief. Or – conversely – in the phrase “I believe he is coming at 5pm”, you get the meaning “but I’m not really sure.” So how are we to take those news stories that begin “Scientists believe”? A statement like “most biologists believe in evolution” could be used to claim that evolution is as much faith-based as organised religion. (I tell my students that I don’t ‘believe’ in evolution, but accept it as the best available current explanation for life’s diversity. This can engender some interesting discussions…)

But what the statement “most scientists believe” means – to scientists – is that most scientists agree that the weight of evidence favours a particular interpretation. Quinn suggests we should say “scientific evidence supports the conclusion that…” I like this – it leaves open the possibility that this conclusion could change, if sufficient evidence to the contrary comes to light. Which is a much better reflection of the nature of science. Unfortunately there tends to be a perception that scientific ‘facts’ don’t change. (Also unfortunate is the fact that if scientists do change their interpretation of the data, they’re accused of not really knowing what they’re talking about. Sometimes I think we just can’t win!) Like Quinn, I feel that as scientists we shouldn’t be using the ‘b’ word – it gives the appearance that science is “just another belief system.”

‘Theory’ is another word that means different things to different people. “I’ve got a theory about that” really means, ‘I’ve got a hunch or an idea, a guess.’ But to scientists ‘theory’ means a well-established explanation for a large body of data: the theories of relativity, plate tectonics, evolution… These are definitely not guesses (nor are they belief systems!), but comprehensive explanations that have strong predictive power and have been tested time and time again. They are also incomplete, but that again is the nature of science. Scientific theories may well be modified if new evidence comes to hand: Newton’s laws are an example. (Quinn notes that Newton’s laws still hold, under certain well-defined conditions.)

It’s worth repeating Quinn’s description of how scientific theories are developed, because this is a valuable description of how science operates and what sets it apart from ‘other ways of knowing’:

When we seek to extend and revise our hypothetical frameworks, we make hypotheses, build models, and construct untested, alternate, extended theories. These last must incorporate all the well-established elements of prior theories. Experiment not only tests the new hypotheses; any unexplained result both requires and constrains new speculative theory building – new hypotheses. Models … play an important role here. They allow us to investigate and formulate the predictions and tests of our theory in complex situations. Our theories are informed guesses, incorporating much that we know. They may or may not pan out, but they are motivated by some aspects or puzzles in the existing data and theory. We actively look for contradictions.